27 research outputs found

    AmpliCoV: Rapid Whole-Genome Sequencing Using Multiplex PCR Amplification and Real-Time Oxford Nanopore MinION Sequencing Enables Rapid Variant Identification of SARS-CoV-2

    Get PDF
    Since the emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in December 2019, the scientific community has been sharing data on epidemiology, diagnostic methods, and whole-genomic sequences almost in real time. The latter have already facilitated phylogenetic analyses, transmission chain tracking, protein modeling, the identification of possible therapeutic targets, timely risk assessment, and identification of novel variants. We have established and evaluated an amplification-based approach for whole-genome sequencing of SARS-CoV-2. It can be used on the miniature-sized and field-deployable sequencing device Oxford Nanopore MinION, with sequencing library preparation time of 10 min. We show that the generation of 50,000 total reads per sample is sufficient for a near complete coverage (>90%) of the SARS-CoV-2 genome directly from patient samples even if virus concentration is low (Ct 35, corresponding to approximately 5 genome copies per reaction). For patient samples with high viral load (Ct 18–24), generation of 50,000 reads in 1–2 h was shown to be sufficient for a genome coverage of >90%. Comparison to Illumina data reveals an accuracy that suffices to identify virus mutants. AmpliCoV can be applied whenever sequence information on SARS-CoV-2 is required rapidly, for instance for the identification of circulating virus mutants.Peer Reviewe

    Outbreak of leptospirosis among triathlon participants in Germany, 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In August 2006, a case of leptospirosis occurred in an athlete after a triathlon held around Heidelberg and in the Neckar river. In order to study a possible outbreak and to determine risk factors for infection an epidemiological investigation was performed.</p> <p>Methods</p> <p>Participants of the triathlon were contacted by e-mail and were asked to fill out a standardized questionnaire. In addition, they were asked to supply a serum sample for laboratory diagnosis of leptospirosis. A confirmed case patient was defined as a clinical case (i.e. fever and at least one additional symptom suggestive for leptospirosis) with at least two of the following tests positive: ELISA IgM, latex agglutination testing, or microscopic agglutination testing. Rainfall and temperature records were obtained.</p> <p>Results</p> <p>A total of 142 of 507 triathletes were contacted; among these, five confirmed leptospirosis cases were found. Open wounds were identified as the only significant risk factor for illness (p = 0.02). Heavy rains that preceded the swimming event likely increased leptospiral contamination of the Neckar River.</p> <p>Discussion</p> <p>This is the first outbreak of leptospirosis related to a competitive sports event in Germany. Among people with contact to freshwater, the risk of contracting leptospirosis should be considered by health care providers also in temperate countries, particularly in the summer after heavy rains.</p

    Distribution of Clinically Relevant Borrelia Genospecies in Ticks Assessed by a Novel, Single-Run, Real-Time PCR

    No full text
    A LightCycler-based PCR protocol was developed which targets the ospA gene for the identification and quantification of the different Borrelia burgdorferi sensu lato species in culture and in ticks, based on the use of a fluorescently labeled probe (HybProbe) and an internally labeled primer. The detection limit of the PCR was 1 to 10 spirochetes. A melting temperature determined from the melting curve of the amplified product immediately after thermal cycling allowed the differentiation of the three different B. burgdorferi sensu lato genospecies (B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii) that are clinically relevant in Europe in a single PCR run. This method represents a simplified approach to study the association of different Borrelia species in ticks, the risk of Lyme borreliosis, and the putatively species-specific clinical sequelae. To determine the reliability of the real-time PCR protocol, we studied the prevalence of B. burgdorferi sensu lato infection in Ixodes ricinus ticks. A total of 1,055 ticks were collected by flagging vegetation in five different sites in the region of Konstanz (south Germany) and were examined for the distribution of B. burgdorferi species by real-time PCR. The mean infection rate was 35%. Of 548 adult ticks, 40% were positive, and of 507 nymphs, 30% were positive. The predominant genospecies (with 18% mixed infections) in the examined areas was B. afzelii (53%), followed by B. garinii (18%) and B. burgdorferi sensu stricto (11%); 0.8% of the infecting Borrelia could not be identified

    A real-time multiplex-nested PCR system for coprological diagnosis of Echinococcus multilocularis and host species.

    No full text
    Attention Patrick Giraudoux n'est pas affiliĂ© Ă  UR0346International audienceA hybridization probe-based real-time multiplex-nested PCR system was developed for the simultaneous detection of Echinococcus multilocularis and host species directly from faecal samples. Species identification was determined by melting curve analysis. Specificity was assessed by using DNA extracted from various cestodes (E. multilocularis, Echinococcus granulosus (G1), Echinococcus ortleppi, Echinococcus canadensis (G6, G7), Taenia crassiceps, Taenia hydatigena, Taenia mustelae, Taenia pisiformis, Taenia serialis, Taenia taeniaeformis, Mesocestoides leptothylacus), carnivores (Vulpes vulpes, Vulpes corsac, Vulpes ferrilata, Canis familiaris, Felis catus, Martes foina), Microtus arvalis and Arvicola terrestris. The analytical sensitivity was 10 fg, evaluated with serially diluted DNA of E. multilocularis to 10 Όl total DNA solution from E. multilocularis-negative canid faeces. Based on a comparison of 47 dog samples from China, the proportion of the E. multilocularis-positive-tested samples by the real-time multiplex-nested PCR was moderately higher (38% vs. 30%) as when tested with a previously evaluated nested PCR with a sensitivity of 70-100%, depending on the number and gravidity status of worms present in the intestine (Dinkel et al., J Clin Microbiol 36:1871-1876, 1998). To assess the epidemiological applicability of this method, 227 canid faecal samples collected in the field were analysed. This newly developed real-time multiplex-nested PCR system is a specific, sensitive and reliable method for the detection of E. multilocularis and host species in faecal samples for epidemiological purposes

    Tick-Borne Encephalitis Vaccination Protects from Alimentary TBE Infection: Results from an Alimentary Outbreak

    No full text
    In May 2017, a hospitalized index case of tick-borne encephalitis (TBE) was confirmed by Serology. The case was linked to alimentary infection by raw milk from a goat farm in the region of TĂŒbingen, Baden-WĂŒrttemberg, Germany, where no previous TBE cases in the area had been reported before. The TBE focus was confirmed by isolation of the TBE virus from ticks and Serological confirmation of past infection in one of the five flock goats. Additional investigations by the local public health office identified 27 consumers of goat milk at the putative period of exposure. For 20/27 exposed persons, anamnestic information was gained by the local public health office. Twelve/fourteen exposed and non-vaccinated people developed clinical illness and were confirmed as TBE cases by Serology. Five/six vaccinated and exposed people did not develop the disease. The one exposed and vaccinated person had their last TBE vaccination booster more than 15 years ago, and therefore a booster was more than 10 years overdue. None of the regularly vaccinated and exposed persons developed clinical overt TBE infection. We report the first known TBE outbreak, during which, protection by TBE vaccination against alimentary TBE infection was demonstrated
    corecore